UNCLASSIFIED

AD NUMBER

AD843077

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors; Critical Technol ogy; OCT
1968. Ot her requests shall be referred to

O fice of Naval Research, Washi ngton, DC 20360.
Thi s docunent contains export-controlled

t echni cal dat a.

AUTHORITY

onr notice, 27 jul 1971

THISPAGE ISUNCLASSIFIED




—-‘-ﬂ"

HPC 68-72

MONSANTO/WASHINGTON UNIVERSITY
ONR/ARPA ASSOCIATION

77

M:CHANICAL PROPERTIES OF TAPE COMPOSITES

P. E. Chen and L. E. Nielsen

AD 430

October 1968

PROGRAM MANAGER
ROLF BUCHDAHL

This document is subject to special export controls and each transmittal to foreign

governments or foreign notionals may be made only with prior approval of the

Director
of Material Sciences, Office of Naval Research.

MONSANTO RESEARCH CORPORATION

A SUBSIDIARY OF MONSANTO COMPANY

800 N. LINDBERGH BOULEVARD ST. LOUIS, MISSOURI 63166

Monsén_t-o‘

-

~d




AD- 783

[AGCEsSION for -
ol WAITE SEETION
Bac BURF SFTION
B AN BUNGID
[T 1T R —

......

DIST. | AVAIL aad/wr

%

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely related Govern-
ment procurment operation, the United States Government thereby
incurs no responsibiliy nor any obligation whatsoever; and the fact that
the Government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data, is not to be regarded
by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way be

related thereto.

NOTICES

DDC release to CFSTl is not authorized.



HPC 68-72

This document is subject to special gxport controls and each
transmittal to foreign governments or foreign nationals may be

made only with prior approval of the Director of Material

MONSANTO/WASHINGTON UNIVERSITY
ONR/ARPA ASSOCIATION

MECHANICAL PROPERTIES OF TAPE COMPOSITES

P. E. Chen and L. E. Nielsen
October 1968

Program Manager
Rolf Buchdahl

Sciences, Office of Naval Research.

Monsanto Research Corporation
800 North Lindbergh Blvd.
St. Louis, Missouri 63166




FOREWORD

The research reported herein was conducted by the staff of

the Monsanto/Washington University Association under th. sponsor-

ship of the Advanced Research Projects Agency, Department of
Defense, through a cont;ract with the Office of Naval Rcsearch,
N00014-67-C-0218 (formerly N00014-66-C-0045), ARPA Order
No. 873, ONR contract authority NR 356-484/4-13-66, entitled
"Defr.elopment of High Performance Composites."

The prime contractor is Monsanto Research Corporation.
The Program Manager is Dr. Rolf Buchdahl (phone 314-694-4721).

The contract is funded for $5,000,000 and expires 30 April

1970.

1
e e e




'

B ey T e T T S T TR A TRy T TR T S G e

ABSTRACT

The stiffness and strength of tape-reinforced composites
have been calculated by using the finite-element method, simple
model theory and the von Mises-Hencky criterion. The tapes
are assumed to be oriented uniaxially in both the longitudinal
and transverse directions. According to the theoretical cal-
culations, substantial increases in two basic moduli and a
transverse strength are possible with the tape systems, as
compared with the corresponding fiber systems. The calcula-

tions are based mainly on glass-epoxy composites.
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INTRODUCTION

A great deal of literature [1-7] has been published con-
cerning the mechanical properties of fiber and particulate- .
reinforced Esmposites, but relatively scanty information-is
available on such properties for the tape-reinforced cciposites
which are characterized by the class of reinforcements with
parallel faces. In order to establish the practical potential-
ities of the tape composites, theoretical studies have been
made on the stiffness and strength of such systems. The tapes
are assumed to be uniaxially aligned both in the longitudinal
and transverse directions, and ideally packed into staggered
configuration in cross section as shown in Figure 1.

The longitudinal modulus and strength of the tape
rcomposites are essentially the same as those of the correspond-
ing fiber composites. The other five basic elastic moduli and
the two transverse strengths have been calculated for the tape
composites and compared-with those for fhe corresponding fiber
composites. The fiberé in the reference composite systems are
assumed to be circular in cross section, uniaxially aligned,
and packed into hexagonal arrays.‘ Two limiting conditions
have been considered in the strength calculations. For the
first condition the reinforcing phase is assumed to be perfectly
bonded to the matrix, while for the second condition it is
assumed to be totally debonded from the matrix, thus providing

the upper and lower bounds.
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The calculations are based mainly on the glass-epoxy
systems because of the commercial availability of the glass
tapes. However, some calculations have been made also on

boron-epoxy systems for comparison's sake.
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THEORY

Elastic Moduli

Uniaxiglly oriented tape composites are anisotropic and
require six élastic moduli to describe their stiffness char-
acteristics. These elastic moduli are illustrated in Figure 2
in which EL’ ET and ETT are Young's moduli, while Gypr Gpp'
and Gpn are shear moduli. The subscripts L and T refer to
the longitudinal and transverse directions respectively.

The finite-element method [8-10] is utilized to calculate
the stresses and displacements in the composite, which in turn
are used to evaluate the elastic moduli from their basic
definitions. Based on this method, an elastic system is first
divided into a number of discrete elements joined together at
the nodes. The basic zquations of elasticity can be written
for each of the elements within the system, which relate the
forces acting on the nodes to the displacements of the nodes.
These equations can then be correlated through a set of rela-
tions representing the simpie fact that the elements must fit
together, which is usually referred to in elasticity theory
as the compatibility condition. |

A typical region as shown in Figure 3 can be used to
calculate the transverse moduli of the tape composites. To
calculate the transverse modulus E,, (parallel to the widths

T
of the tapes) for the tape composites, the finite-element
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meéthod is first applied to the typical region and the procedure
given in the Appendix is used to calculate the distributions of
stress and displacement. in the region. Corresponding to the
superimposed case as given in the Appendix, the applied normal
stress (parallel to the widths of the tapes) can be calculated
from the stress distribution thus determined. The modulus is
obtained by a simple application of the Hooke's law. The
transverse modulus ETT (perpendicuiar to the widths of thé
tapes) of the tape composites can be calculated in a similar
manner except that the normal load is now applied in the y-
direction, and the boundary conditions for Cases 1 and 2 as
well as the equation tor superposition in Case 3 as given in
the Appendix are changed accordingly.

The transverse modulus Eq or Eqpp of the fiber composites
are calculated based on the formulas given in References 1
and 11.

The transverse shear modulus Gpp (parallel and perpendicu-
lar to the widths of the tapa3) of the tape composites can be
calculated by cqnaidering the same typical region as mentioned
previously, except using the boundary conditions corresponding
to those of the pure shear and governed by compatibility of
the composite domain. The longitudinal-transverse shear modu-
1i GLT (with the longitudinal axis parallel to the lengths
of the tapes, and the transverse axis parallel to their widths)
and Grop! ( with the longitudinal axis parallel to the lengths

of the tapes, and the transverse axis perpendicular to their

widths) of the tape composites are calculated under the same

SN T e T el sl
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boundary conditions as those used for GTT' but with different
typical regions taken in the longitudinal direction. The

LT and GLT' are calculated from the basic defi-
nition of the shear modulus.

: 3
noduli GTT' G

In the limiting case where the width w of the tape is
much greater‘than its fhickness t (i.e., w/t » «), then thé
elastic moduli can be calculated from equations derived from
the simple models consisting of laminated structures. .FiQure.
3 illustrates the models used in this limiting case. For the
both phases experience the same defor-

moduli EL' E_ and G

T LT’
mation, so that the moduli are directly proportional to thec
constituent moduli and the relative proportion of each phase.

For the moduli E ' and Gy e the less stiff matrix phase

¢ SLr
undergoes more deformation than the more rigid tapes; compli-
ances, i.e., reciprocal moduli, are additive in this case.

The equations, which yield either upper or lower bounds, for

the moduli are as follows:

E, =Ep=EV +E/V, (1)
1 Vm , Vf
—— S wmesr P gaices
= (2
T Eg (2)
G o =GV + GV, (3)
v \14
LT’ CrT m f

where Vm and Vf are the volume fractions of the matrix and

tape phases respectively.
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As for fiber composites, the transverse shear moduli GTT
and GLT' are calculated from the formula given in Reference 1,
and the longitudinal-transverse shear modulus GLT from the

formula derived in Reference 5.

Transverse Strengths

Various theories [12-15) have been proposed for predict-
ing the strength of materials. However, the theory introduced
by von Mises [16] and reinterpréted by Hencky [17] is generally
recognized as conceptually most consistent, and it is also
supported by experimental evidences.

The total strain energy stored in an elastic body can
be divided into two parts, the dilatationa) energy and the
distortional energy, with the former being the energy used in
changing the volume and the latter being the energy used in

changing the shape [12,13]. The von Mises-Hencky theory

postulates that yielding sets in when the distortional energy

reaches a critical value. For a uniaxial and plane state of

stress the criterion becomes

= 2 2
@ 0,0, + 0, = S (5)

where o, and o, are the principal.stresses, and Sm is the
strength of the matrix material. The quantity on the left
éide of equation (5) will be referred to as the normalized
distortional energy hereafter.

The von Mises-Hencky criterion has been used to calcu-

late the transverse strengths of tape composites. Based on
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the stress distributions obtained previously for En, the
normalized distortional energy is evaluated for every element
in the domain, thus determining also the maximum normalized
distortional energy. The transverse strength ST (parallel

to the widths of the tapes) of the tape composites can then

be calculated from the following equation:

1
= /2
Sp = Sp 9,/ (Upay) (6)

where 3; is the applied normal stress in.the x-direction (see
Figure 4) under the assumed displacement conditions as described
in the Appendix, and Umax is the corresponding maximum normal-
ized distortional energy. Both E; and.Umax are functions of

the filler.volume content, condition of bonding, as well as

the constituent properties. Further, by using the stress dis-
tributions calculated before for ETT' the transverse composite
strength Spp (perpendicular to the widths of the tapes) for

the tape composites can be calculéted in a similar manner from
the following equation:

' )‘/2

max

Spp = Sp @y / (U (7)

TT

where 5& is the applied normal stress in the y-direction under

the assumed displacement conditions for E__, and U;ax is the

TT
corresponding maximum normalized distortional enerqgy.

The transverse strengths of the fiber composites are cal-
culated based on the method proposed in Reference 18. More-
over, .oth the tape and fiber composite strengths have been

calculated for the conditions of perfect bondin¢ and total

N
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r debording. For the condition of perfect bonding the fillers

. are assumed to be in perfect contact with the matrix, and the

composite is considered continuous, from the mechanistic point
of view, at the interiace between the constituents. For the

condition of total debonding the fillers are assumed to be

completely séparated from the matrix.
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RESULTS AND DISCUSSION

The theoretical approaches as described above were
used to calculate the mechanical properties of tape composites
as functions . of filler volume c¢zontent vf, and compared tb
those for fiber composites. Variations of the moduli ET' ETT'
Spre Spp!
Figures 5, 6, 7, 9 and 10 respectively for glass-epoxy tape

and GTT versus filler volume content Vf are shcwn in

and fiber composites. Figure 8 shows the variations of GLT
s versus V. for boron-epoxy tape and fiber composites. The
normalized moduli ET,/Em and GLT/Gm are shown in Figures 11

through 14 as functions of the tape width to thickness ratio

w/t and filler volume content Vf for glass-époxy and boron-
epoxy tape coﬁposites. The transverse strengths S and STT
are shown in Figures 15 through 18 as functions of filler
volume content for glass-epoxy tape and fiber composites, and
for different bonding conditions. Except for Figures 11
through 14, the tapes are assumed to be 0.125 in. x 0.003 in.
in cross section.

As can be observed from their respective figures, it is
possible for the tape composites to achieve substantial

T

transverse strength Sp, as compared to the corresponding fiber

composites. For glass-epoxy systems, the maximum increases

are as follows: 250% in ET' 340% in GLT and Sp. If boron

tares with the same w/t ratio were used, the increases would

[ increases in the transverse modulus E,, shear modulus GLT and
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have been even higher, for instance, a maximum increase of
1,950% is G;p is possible with such tape systems. Moreover,
from the geometric point of view, it is possible for the
filler volume content in the tape system to reach 100% while
90.6% is the upper limit for the fiber system, thus further
enhancing thé above-mentioned properties. However, it should

also be pointed out that accompanying such increases there

are slight decreases in the other three modull, ETT' GLT' and ]

GTT' Under the condition of total debondlng the transversp
strength Sp of the tape composite is slightly higher, as

compared with the corresponding fiber composite. For the

_case of perfect bonding the transverse strength Spp of the

tape composite equals the matrix strength, which is also
slightly higher than the Spp of the corresponding fiber
composite. 1In addition, undgr the condition of total debond-
ing, the transverse composite strength Swp drops sharply to
Zero as Qoon'as some tapes are embedded intc the matrix. Thus
the significance of bonding'can not be overemphasized.

It is interesting to see from Figures 11 through 14 that
insofar as E; and Gy are yoncerned the asymptotic values
(correspondlng to large w/t values) are practically reached
when w/t = 100.

Perhape, it should also be emphasized that the basis of
strength of the tape composite lies in the staggered packing

arrangement as shown in Figure 1, which Provides an efficient

shear transfer mechanism [19].
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NOMENCLATURE

Bulk modulus of the matrix material.
Young's modulus of the filler material.
Young's modulus of the matrix material -
Longitudinal composite modulus (parallel to
the lengths of the tapes or fibers).
Transverse composite modulus (parallel to
the widths of the tapes in the case of tape
composites).

Transverse composite modulus (perpendicular
to the widths of the tapes in the case of -%{
tape composites).

Shear modulus of the filler material.

Shear modulus of the macrix material.
Longitudinal-transverse composite shear
modulus (with the longitudinal axis parallel
to the lengths of the tapes, and the trans-
verse -axis parallel to their widths, in the
case of tape composites).
Longitudinal-transverse composite shea;
modulus (with the longitudinal axis parallel
to the lengths of the tapes, and the trans-
verse axis perpendicular to their widths, in

the case of tape composites).
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Transverse composite shear modulus (parallel
and perpendicular to the widths of the tapes
in the case of tape composites).

Strength of the matrix material.

Transverse composite strength (parallel:to
the widths of the tapes in the case of tape
composites).

Transverse composite strength (perpendicular
to the widths of the tapes in the case of
tape composites).

Poisson's ratic of the filler material.
Poisson's ratio of the matrix material.

Maximum normalized distortional energies for

applied normal stressses in x and y-directions

(see Appendix).

Filler volume content.
Matrix volume content.
Rectangular coordinates.

Displacements in x and y-directions.

Displacements in x and y~-directions for Case 1

in the Appendix.

Displacements in x and y-directions for Case 2

in the Appendix.

Principal stresses.

Average normal stresses in x and y-directions

for Case 1 in the Appendix.
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a, b
w, t

F.E.M.

S.M.T.

=14~

Average normal stresses in x and y-directions
for Case 2 in the Appendix.

Average normal stresses in x and y-directions
for Case 3 in the Appendix.

Shearing stress in Xy-plane parallel to x or
y-axis.

Width and length of the typical regica.

Width and thickness of the tape.

Results obtained by using the finite-element
method (for w/c = 41.7).

Results obtained by using the simple model

theory (for w/t + =),

* u =
TR T T RS S ST N e Lot AT
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APPENDIX

The determination of the stress and displacement distri-
butions in a transverse composite domain as shown in Figure 1
can be accomplished by analyzing a typical region, as shéwn
in Figure 4. The procedure used here is basically similar to
that described in Reference 20. 1In conjunction with the
evaluatiorn of Ep and Sq, the finite-element technique and the
method of superposition a.e used to solve the problem in the
following steps, assuming that the applied normal stress is
in the x-direction:

1; Solve Case 1 which is defined by the following bound-
ary conditions:

Ty = 0 along the entire boundary,

u =0 along AO (points remain on the y-axis because
of symmetry),

u =1 along BC (arbitrarily specified unit displace-
ment) ,

v =0 along OC (points remain on the x-axis because
of symmetry),

v =0 along AB (specified displacement condition).

The displacement field thus calculated is (u,,v,), and
the average normal stresses in the x and y-directions are E*x

and 5}) respectively.

P

|
- |
|
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2. Solve Case 2 which is defined by the following bound-

ary conditions:

Txy = 0 along the entire boundary,
u = 0 along A0,
u. =0 along BC,
v = 0 along OC,
v = 1 along AB.

The displacement field thus calculated is (u,,v,) and
the average normal stresses in the x and y-directions are 3;2

and 3&2 respectively.
3. Solve Case 3 which is characterized by 5& = 0, solu-
tion of Case 2 is multiplied by (-3&1/ 8&2) and summed with
that of Case 1. Thus the corresponding applied normal stress
on the composite is
= Fyx -

O% = 9%y ~ s Ox2 . (8)

Likewise for the stress and displacement components.
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Figure 17. Transverse strength S, as a function of filler
volume content Vf for glass-epoxy tape and j“
fiber composites, assuming matrix strength
= 13,000 psi.

Figure 18. Transverse strength S;, as a function of f;ller
volume content Vf for glass-epoxy tape and

fiber composites, assuming matrix strength

« 13,000 psi.
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GLASS-EPOXY COMPOSITES

E¢ =10.6X10% psi, v¢ =0.22
Em= 0.5X10% psi, v =0.35

12 ¢
F.EM. = Finite-Element Method

S.M.T. = Simple Model Theory 10.6
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Figure 5
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Em® 0.5X10%psi, vp=0.35

12r

10.6
10}

0 20 40 60 80 100

Vs (percent)

Figure 6

| T,

S, T g Mt .5 et S i B e S T, < g O 2 ooy M

rtcns~ et Vg x| i . Ty - - S



GLASS-EPOXY COMPOSITES
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